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Abstract 8 

This paper presents the case for an ‘End-to-End’ flood inundation modelling strategy: the 9 
creation of a coupled system of models to allow continuous simulation methodology to be 10 
used to predict the magnitude and simulate the effects of high return period flood events. 11 
The framework brings together the best in current thinking on reduced complexity 12 
modelling to formulate an efficient, process-based methodology which meets the needs of 13 
today’s flood mitigation strategies. The model chain is subject to stochasticity and 14 
parameter uncertainty, and integral methods to allow the propagation and quantification 15 
of uncertainty are essential in order to produce robust estimates of flood risk. 16 

Results from an experimental application are considered in terms of their implications for 17 
successful floodplain management, and compared against the deterministic methodology 18 
more commonly in use for flood risk assessment applications. The provenance of 19 
predictive uncertainty is also considered in order to identify those areas where future 20 
effort in terms of data collection or model refinement might best be directed in order to 21 
narrow prediction bounds and produce a more precise forecast.   22 

 23 
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Introduction 24 

Modern Responses to Flood Risk 25 

In recent years, significant changes in scientific, public and government opinion have 26 
brought about a reappraisal of flood management policy in Britain. Costly failures of 27 
structural flood defence measures have highlighted the inadequacy of historical designs 28 
when faced with the changing nature of river flow characteristics due to climate change, 29 
urbanisation and land-use change on floodplains. This has been matched by a broadening 30 
of the concept of flood risk assessment from purely economic considerations to cover 31 
wider social and environmental values (DEFRA, 2002). In response to these drivers, 32 
current governmental policies on flood prevention and mitigation measures increasingly 33 
favour ‘soft’ solutions centring on the restoration, enhancement or creation of the natural 34 
functions of the floodplain, over ‘hard’ engineering solutions.  35 

The Need for an Updated Approach to Flood Risk Assessment 36 

Non-Stationarity of the Flood Generation Process 37 

Today we are in a period of what is widely considered to be enhanced flood risk caused 38 
by the joint human factors of climate change and land-use change (Wheater, 2006). Non-39 
stationarity is exhibited in the recent precipitation record (Dai et al., 1997; Easterling et 40 
al., 2000; Groisman et al., 2004; Huntington, 2006; Osborn and Hulme, 2002; Staeger et 41 
al., 2003), suggesting an intensification of the hydrological cycle, and giving credence to 42 
GCM model predictions of increased frequency of heavy rainfall events (Arnell et al., 43 
2001; Arnell and Reynard, 1996). These results may be compounded by aspects of land-44 
use change which reduce the ability of catchments to store flood water and to attenuate 45 
flood peaks. 46 

If non-stationarity is accepted as existing in the flood generation process, this violates a 47 
critical assumption of the mathematical theory behind conventional, statistical flood risk 48 
assessment. In order to derive the extreme value distribution which these methods fit to a 49 
data series of recorded flood peaks, floods must be assumed to occur as independent, 50 
identically distributed, random events from a single, stationary distribution. Even where 51 
recurrence intervals are regularly updated with new data, the non-stationarity of the 52 
process over the data collection period invalidates that assumption.  53 

Distributed Flood Risk Mapping 54 

Historically, the chief focus of flood risk assessment (FRA) has been the derivation of 55 
discharge or stage for a given set of return periods, reflecting a reliance on structural 56 
flood defence works whose aim was to contain flood flows within the designated channel. 57 
Soft engineering solutions, floodplain restoration and homeowner responsibility demand 58 
instead spatially distributed flood risk information. To cater for this demand, 1D 59 
hydraulic models are typically extended to provide ‘basin-fill’ water elevation mapping 60 
using either extended cross-sectional data or a network of floodplain storage cells (e.g. 61 
USACE, 2006). This method typifies a more simplistic view of the floodplain as purely a 62 
storage reservoir.  63 

In contrast, flood defence circumvention or failure during extreme events has 64 
demonstrated the connectivity of channel and floodplain as a coupled system during 65 



 3 

times of flood. The hydraulic approximations made by a 1D model prevent representation 66 
of lateral momentum transfer between the river and the floodplain, and cannot account 67 
for the pressure gradients which force water flows at highly variable rates between the 68 
two areas. The increased expectation of flood flows through complex urban areas, due to 69 
changes in flood defence strategy, requires flood risk mapping based on 2D models 70 
which are capable of providing a dynamic representation of water transport onto and 71 
around the floodplain. 72 

 73 

 74 

Development of a Process-Based Continuous Simulation 75 
Methodology 76 

This paper proposes a preliminary structure for a modern FRA methodology which, 77 
motivated by a desire to address the deficiencies in standard FRA techniques outlined 78 
above, seeks to combine the benefits of the latest modelling techniques to produce an 79 
efficient, integrated approach to current FRA requirements. A central aim for the 80 
structure was that it should embody a process-based approach; this greatly increases the 81 
predictive power of the system in response to novel input and boundary conditions and 82 
allows the structure and parameters of the system to be modified to reflect knowledge of 83 
changing conditions of climate and land-use. In order to achieve this, the FRA structure is 84 
underpinned by the technique of continuous simulation. 85 

Continuous simulation uses the available precipitation record for the catchment as a basis 86 
for creation of long synthetic rainfall series. These series are used as input to a rainfall-87 
runoff model to produce the corresponding discharge series, from which extreme event 88 
frequencies may be calculated explicitly. The method provides continuous soil moisture 89 
accounting which gives implicit consideration of antecedent wetness conditions in the 90 
catchment. Using this flexible method, climate change might be represented via a 91 
modification of the rainfall frequency distributions using estimates of the effects of 92 
climate change on particular aspects of rainfall patterns. Land-use change could be 93 
included via a modification of the rainfall-runoff model structure or parameters, such as 94 
an increase in runoff coefficient. Although continuous simulation has previously been 95 
used to forecast the discharge magnitude of extreme floods (Cameron et al., 1999; Chetty 96 
and Smithers, 2005; Franchini et al., 2000; Hashemi et al., 2000; Maskey et al., 2004; 97 
Onof et al., 1996; Pandit and Gopalakrishnan, 1996), and in rare cases extended to 98 
applications in design of structural floodplain defence measures (Hsieh et al., 2006) and 99 
flood mapping studies (Faulkner and Wass, 2005), it has not been considered suitable for 100 
integration into the standard FRA framework due to the computational overhead required. 101 
However, by using a relatively simple rainfall-runoff model, it proves to be a practical 102 
and valuable tool. 103 

The new structure is also defined by its integrated, ‘End-to-End’ approach to FRA. As 104 
management plans become catchment- or basin-wide in their scope, so too should FRA 105 
methods be spatially and temporally ambitious. No part of the catchment acts in isolation; 106 
the process-based approach attempts to replicate the connected system through a cascade 107 
of coupled models representing precipitation regime, rainfall-runoff characteristics and 108 
floodplain inundation behaviour. Discharge estimates from the continuous simulation of 109 
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runoff are used to drive a 2D model of floodplain hydraulics which utilises new, high-110 
resolution elevation data to enable urban floodplain modelling at the smallest scales and 111 
paves the way for additional modules for vulnerability and damage assessment. These 112 
would be used to calculate the social and economic impacts of floods, for example using 113 
information on building use or value (Apel et al., 2004; Merz et al., 2004), and could be 114 
implemented within a risk-based sampling technique to reduce computational burden 115 
(Dawson et al., 2005). Finally, the coupled model structure may be run within a proven 116 
uncertainty estimation framework, to allow explicit calculation of the cascading 117 
uncertainties. 118 

This technique has previously been tested within a reduced stochastic-rainfall-model: 119 
rainfall-runoff-model system (Blazkova and Beven, 2002; 2004; Cameron et al., 2000; 120 
Kuchment and Gelfan, 2002; Lamb, 1999). Uncertainty estimation within a full ‘End-to-121 
End’ approach is already being successfully applied to event-based simulation (De Roo et 122 
al., 2003; Pappenberger et al., 2005; Sattler and Feddersen, 2005), although these authors 123 
note the computational limitations currently placed on the method. This study places 124 
particular emphasis on the need to integrate uncertainty estimates into model predictions 125 
targeted for end-user communities. 126 

 127 

Modelling and Methods 128 

Overview 129 

A coupled model chain is created consisting of a stochastic rainfall model, a rainfall-130 
runoff model and a floodplain inundation model. This section presents an outline of each 131 
model, followed by the coupling methodology. Component models are chosen to 132 
represent the latest advances in reduced-complexity methods, however flexibility is key 133 
to the End-to-End FRA ethos and models could be varied according to individual case 134 
attributes.   135 

The model descriptions given here are necessarily brief; full detail may be found in 136 
McMillan (2006) and McMillan and Brasington (2007). 137 

Component Models 138 

Stochastic Rainfall Model 139 

All stochastic rainfall generation models rely on an initial decomposition of rainfall 140 
records to identify frequency characteristics of storm data (e.g. depth, duration and 141 
intensity), which are then used to parameterise a rainfall generation mechanism. A 142 
profile-based method was chosen, for ease of implementation and a desire to reduce the 143 
need for parameterisation by use of a ‘data-based’ method. The method splits the total 144 
storm depth into time-step depths by using a profile or mass curve (e.g. Arnaud and 145 
Lavabre, 1999; Beven, 1987; Blazkova and Beven, 2002; Cadavid et al., 1991; Cameron 146 
et al. 1999; 2000; Cernesson et al., 1996; Diaz-Granados et al., 1984; Eagleson, 1972; 147 
Hebson and Wood, 1982). 148 

The distributions of storm intensity, duration and inter-arrival time are collated and 149 
smoothed using Gaussian kernel density estimation (Silverman, 1982; 1986; Antoniadis, 150 
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1995), with modifications made for skewed or discontinuous distributions as appropriate. 151 
In order to create the stochastic storm sequence, random samples were drawn from these 152 
distributions, and a storm created using a profile drawn randomly from the storm record. 153 
Two modifications were made to this basic model structure to improve model 154 
performance, as follows.  155 

Firstly, storms may be segregated by season if characteristic differences exist (e.g. 156 
Blazkova and Beven, 2000; Walshaw, 1994). Here a split into two seasons was made 157 
(Feb-Aug, Sep-Jan) to reflect seasonality in rainfall totals. Secondly, the storm 158 
characteristics showed a negative correlation between intensity and duration, which 159 
should be recognised within the model structure to optimise performance (Cameron et al., 160 
1999; 2000; Goel et al., 2000; Kurothe et al., 1997). The empirical intensity distributions 161 
were therefore split by duration into 5 classes before sampling, this method being chosen 162 
in preference to the use of a bivariate intensity-duration sampling distribution to avoid 163 
limitation of model stochasticity. An additional modification to extend the tail of the 164 
intensity distributions using a fitted extreme value distribution, in order to accommodate 165 
the possibility of more intense events than those in the recorded sequence, was rejected 166 
after trials showed that it caused overestimation of observed maximum rainfalls.    167 

Rainfall-Runoff Model 168 

A transfer function methodology was chosen to provide the rainfall-runoff component of 169 
the model chain. This popular class of models originates from unit hydrograph theory and 170 
the Nash Cascade (Nash, 1959), and represents the catchment as a linear system of 171 
interconnected flow pathways, modified by a nonlinear transform to represent runoff 172 
generation. This model type combines the benefits and well-conditioned nature of a 173 
lumped model while allowing knowledge of catchment structure to be incorporated into 174 
model definition. Various versions of this model have been implemented (e.g. Jakeman et 175 
al., 1990; Young and Beven, 1991; 1994 and a comprehensive review by Young, 2003); 176 
the version described by Sefton and Howarth (1998) was used here.  177 

The equations governing the non-linear rainfall transform are as follows:  178 
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Where ut is the volume of effective rainfall at time t resulting from input rainfall Rt. St 182 
represents the catchment storage index at time t, τ(Ti) is the recession rate of St at 183 
temperature Ti which depends on the recession rate at 20ºC, τw. The parameter c ensures 184 
equality of effective rainfall and runoff volumes. Parameter f modulates 185 
evapotranspiration with temperature, requiring an input temperature series.  186 

The linear routing module of the rainfall-runoff model uses a transfer function to convert 187 
effective rainfall ut into flow Qt. The most usual form of transfer function to be specified 188 
for small catchments consists of two parallel pathways representing quickflow and 189 
slowflow. This choice of model structure was accepted for the study catchment, after 190 
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consideration of physical catchment characteristics and gauging carried out in the field, 191 
together with model trials. The model structure is shown in Equation 4. 192 
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Equation 4: Two-component transfer function structure 194 

Where z-1 is the backward shift operator, i.e. z-1Qt = Qt-1. The parameters that must be 195 
estimated are βq, βs, αq, αs, δ (where suffix q represents quickflow parameters, s 196 
represents slowflow parameters), given calibration data consisting of effective rainfalls 197 
{u t} and flows {Qt}. The parameters for both non-linear and linear model parts are 198 
estimated using the GLUE procedure (Beven and Binley, 1992) outlined below. 199 

Floodplain Inundation Model 200 

The floodplain inundation model chosen for this application takes advantage of 201 
significant recent progress in reduced complexity modelling, achieved by directly 202 
coupling 1d channel hydraulic models with 2d raster storage cell approximation for 203 
floodplain flows (e.g., Bates and De Roo, 2000). This approach offers order of magnitude 204 
gains in computational efficiency over more complex finite element and volume codes 205 
(Aronica, et al., 2002; Horritt and Bates, 2001b). 206 

The channel model uses the kinematic approximation to the Saint-Venant equations, 207 
which describe one-dimensional unsteady open channel flow. They consist of a 208 
continuity equation and a momentum equation (Equations 5 and 6). Variables used are: 209 
Q, flow; A, cross-sectional area; t, time; x, horizontal position; y, vertical position; g, 210 
gravity; S0, bed slope; Sf, friction slope. 211 
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The kinematic approximation uses the full continuity equation, but only the gravity and 213 
friction force terms in the momentum equation, neglecting pressure and acceleration 214 
terms. 215 

The floodplain model uses a raster cell approach that has been popularised by Bates and 216 
De Roo (2000) and De Roo et al. (2000) with their model LISFLOOD-FP; similar ideas 217 
have also been used by Estrela and Quintas (1994) and Romanowicz et al. (1996), all 218 
building on methods suggested by Cunge et al. (1976). The model uses numerical 219 
discretisation in space and time, as with the channel model. The floodplain is treated as a 220 
grid of square cells, with flow allowed between 4-connected cells. As in the channel 221 
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model, continuity and momentum equations are solved to calculate flow rates. The 222 
continuity equation relates flow across cell boundaries to the volume stored in the cell 223 
(Equation 7); the momentum equation uses Manning’s Law to relate flux to surface slope 224 
and hydraulic radius (Equation 8). 225 

 226 

Continuity Equation: 
yx

QQQQ

t
h y

ji
y

ji
y

ji
x

ji
xji

∆∆

−+−

∂
∂

−−

=
,1,,,1

,

 (7) 

Momentum Equation: ( ) yQ x
hh

n

hji
x

jijiflow ∆= ∆
−− ,,13/5

,  (8) 

Where hi,j is water depth at cell (i,j), hflow is free water depth between two cells, ∆x and ∆y 227 
are the cell dimensions, n is Manning’s friction coefficient, and Qx and Qy are the flow 228 
rates in two directions between cells. 229 

Two major modifications are made to this basic model structure; both are described more 230 
fully in McMillan and Brasington (2007). Firstly, the numerical stability of the model is 231 
improved using a redesigned function to limit excessive flows between cells, which occur 232 
particularly in areas of deep, ponded water due to the use of numerical approximations to 233 
the governing differential equations. This limiter aimed to improve on that designed by 234 
Hunter et al. (2004), by recognising the interaction of multi-directional flow paths and 235 
hence retaining information on preferential flow pathways within the floodplain. This 236 
was achieved by imposing a total outflow limit on each cell to be split proportionally 237 
between the multiple outflows; implicitly considering these flows as dependant processes. 238 
The limiter form is shown in Equation 9. The use of a limiter removes model sensitivity 239 
to floodplain friction, a pattern previously noted in storage cells models, and arises 240 
because the form of the flow limiter becomes the dominant control on floodplain flows 241 
(Romanowicz and Beven, 2003; Hunter et al., 2004; Hall et al., 2005). 242 
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Secondly, the model is upgraded to allow sub-grid model parameterisation, in an attempt 244 
to harness the wealth of terrain information contained within a LIDAR scan of a river 245 
reach within an efficient model structure. This is achieved by using the concept of ‘cell 246 
porosity’ to allow the use of sub-grid topographic information within a coarse resolution 247 
model. The porosity function quantifies the percentage of the assumed cell volume that is 248 
available for water storage after accounting for sub-grid features; similarly modified 249 
values of cell boundary cross-section area and wetted perimeter are also defined. By 250 
using this information to adjust the continuity and momentum equations, model 251 
behaviour may react to preferential flow directions and flow volumes in a way that is not 252 
possible using a simple roughness coefficient. The method is designed to reflect the first 253 
order controls on flow conveyance while enabling simulations to be carried out at a 254 
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computationally efficient resolution; Yu and Lane (2006) demonstrate the potential of the 255 
concept by using sub-grid scale information at a resolution half that of the model.  256 

Model Coupling 257 

Using GLUE in End-to-End Hydrological Modelling 258 

The GLUE technique (Beven and Binley, 1992) is a tool for investigation of model 259 
response and associated uncertainty, under equifinality of model structure or 260 
parameterisation. Based on principles from Bayesian statistics, the technique relies on the 261 
computation of a 'likelihood' measure, an estimate of how likely the model is to produce 262 
acceptable simulations based on its performance tested against some observed data. The 263 
model is run many times using many different parameter sets (often chosen using Monte 264 
Carlo analysis), and the predictions of each behavioural model are weighted using a 265 
normalised likelihood value. A cumulative distribution can then be calculated for each 266 
prediction variable at each timestep, and hence quantiles as required (Equation 10).  267 

( ) ( )∑∈
Θ=<

Xi it LqQP  where { }qQiX i
t <⋅= |  (10) 268 

Where Qt is the predicted flow (or other variable) at time t, q is the observed flow, Θi is 269 
the ith set of parameters for the model, L(Θi) is the likelihood value obtained when the 270 
model is run using these parameters, and Qt

i is the predicted flow at time t using these 271 
parameters. The advantages of the technique lie in the ability to make predictions of 272 
uncertainties in highly non-linear systems where the assumptions of traditional statistical 273 
techniques prove too restrictive.  274 

It is important to note that when estimating confidence limits using GLUE, the discharge 275 
predictions at each timestep do not relate to a single set of parameter values and hence a 276 
single model realisation. Thus when applying GLUE to coupled models, uncertainty 277 
bounds cannot be cascaded through the model series by treating the bounds for output 278 
timeseries as a prediction relating to a single parameter set that may be input into the 279 
following model. Instead, results relating to each parameter set must be propagated 280 
through the model chain individually, the resulting computational demands presenting 281 
serious constraints on the number of dimensions over which uncertainty can be 282 
considered. Decisions therefore had to be made in order to restrict the scope of the 283 
analysis, balancing the efficiency of the system against the extent and accuracy of the 284 
results.  285 

Coupling of Rainfall and Rainfall-Runoff Models 286 

The rainfall simulation model was derived using empirical data rather than fitted 287 
parameters, and therefore there is no explicit parameter uncertainty. Instead, the 288 
perceived uncertainty in a rainfall simulation relates to the choice of model type and the 289 
inherent stochasticity of the model; one realisation of a rainfall series represents only a 290 
single possible outcome. We therefore consider the uncertainty in realisation of rainfall 291 
series, together with the uncertainty of choice of rainfall-runoff model parameters. Model 292 
structural uncertainty is not considered here, although it is inherent in the choice of each 293 
component model. 294 
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Although the most comprehensive approach to uncertainty estimation would be to search 295 
these two sources of uncertainty as a 2D parameter space (i.e. every rainfall realisation 296 
coupled with every parameter set), this strategy would be extremely costly in 297 
computational terms. Instead, following Cameron et al. (1999), independent random 298 
selections are made from the two sets, and this joint Monte Carlo sample assigned a 299 
performance weighting from the rainfall-runoff model parameter set since the weightings 300 
of the rainfall simulations are deemed equal. 301 

Coupling of Rainfall-Runoff and Floodplain Hydraulic Models 302 

The rainfall-runoff model is used to process each series of simulated rainfall to yield an 303 
estimate of channel discharge at the upstream boundary of the inundation model. The 304 
models must be coupled in such a way as to allow the uncertainty in discharge series to 305 
be represented in the input to the floodplain hydraulic model; the aim being to achieve 306 
inundation extent estimation at various return periods, while specifying the uncertainty 307 
associated with the predictions. The most complete technique for estimating this 308 
uncertainty would be to route the discharge predicted by each rainfall simulation / 309 
rainfall-runoff model combination through the floodplain hydraulic model. Unfortunately 310 
this is clearly not a practical proposition due to computation restrictions. 311 

However, by careful choice of assumptions with regard to the flow behaviour at the site, 312 
efficient methods for estimation of inundation frequency are possible. Here, an approach 313 
based on three key assumptions is proposed.  314 

• First, it is assumed that the inundation extent related to a particular flow event is 315 
independent of flow conditions prior to the time at which out-of-bank flow began. This is 316 
justified due to the rarity of closely spaced flood events, and allows modelling of 317 
individual events to replace the need for continuous simulation. 318 

• Secondly, it is assumed that the frequency distribution of inundation extent may be 319 
characterised using an annual maximum series for flow events, rather than requiring a 320 
peaks-over-threshold (POT) analysis. This is a reasonable assumption given a long 321 
simulated data series: Robson and Reed (1999) show that the advantage gained by using 322 
POT data can typically be acquired using one additional year of annual maximum data. 323 

• A third assumption is made that the event in each year which causes the greatest 324 
inundation is that which has the greatest instantaneous peak discharge. This is based on 325 
the premise that the magnitude of an event is a good indication of other damaging 326 
attributes of a flood such as over-bank volume or duration (the strong peak flow : volume 327 
relationship found in the test catchment is described in the results section). This 328 
assumption is key to reducing processing time as the storm with maximum discharge in 329 
each hydrological year can be easily identified. In contrast, identifying the storm causing 330 
most inundation from a flow series would be a challenging and time-consuming task, and 331 
might not be possible without carrying out the inundation simulation in full. 332 

A final decision was taken that uncertainty in calibration of the floodplain model, i.e. 333 
value of Manning’s n for channel friction, would not be part of the coupled uncertainty 334 
analysis. If this were to be undertaken, then for each return period of interest, the design 335 
event corresponding to each discharge series realisation would have to be propagated 336 
through the inundation model with each possible value of channel friction, giving rise to 337 
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tens of thousands of simulations. This is not computationally feasible given that each 338 
inundation simulation takes several hours to perform (235 minutes benchmarked on a 339 
Pentium 4, 3.2 MHz PC with 1.5GB RAM, based on simulations with the optimal 340 
channel friction coefficient, n = 0.05 m-1/3s). Instead, by considering only the 341 
uncertainty from the rainfall and rainfall-runoff models, the confidence bounds on the 342 
design event magnitude may be translated directly into confidence bounds on inundation 343 
extent. A limited sensitivity analysis of the model response to uncertainty in channel 344 
friction is, however, undertaken to provide a gauge of its relative effects on the 345 
inundation predictions. There is clear scope for this additional uncertainty source to be 346 
more fully considered; however at present this simplified analysis is thought reasonable 347 
as unlike the strongly equifinal behaviour of the rainfall-runoff model, the hydraulic 348 
model calibration showed a unimodal performance distribution with a single optimal 349 
value when validated against combined inundation and hydrograph data.  350 

Process Methodology 351 

Drawing on the assumptions outlined above, the process methodology may thus be 352 
described. Simulated rainfall series, of a length appropriate to the design event to be 353 
estimated, are produced using the stochastic rainfall model. One series is generated to 354 
correspond to each rainfall-runoff model parameter set, the number of which must be 355 
chosen by the investigator. These sets are randomly created by sampling from the feasible 356 
parameter ranges. Each set is assigned a performance (‘likelihood’) value corresponding 357 
to its ability to correctly reproduce a flow record. In the test application described below, 358 
the parameter sets are validated using an 11-year rainfall-flow record. The fit between 359 
observed and predicted flow is tested using the R2 criterion (Nash and Sutcliffe, 1970), 360 
and the parameter set is rejected for values < 0.6. 361 

Each rainfall series is routed through the rainfall-runoff model run with the corresponding 362 
parameter set. On completion of this step, a set of T-year discharge estimates is therefore 363 
available by reading directly from a listing of the maximum flow in each simulated year. 364 
For each rank position in the series, the set of possible realisations of discharge value is 365 
ordered and associated with the parameter set performance value. A weighted cumulative 366 
distribution of discharge for each of these return periods can therefore be created, and 367 
upper and lower limits at the required confidence level together with any other quantiles 368 
produced by interpolation. 369 

The discharge alone is insufficient to create the flow hydrograph required for input into 370 
the floodplain inundation model. The hydrograph is therefore produced using a triangular 371 
approximation, based on an empirical flow-volume relationship derived for the 372 
catchment, together with standard percentages of flow volume before and after the peak 373 
Trials showed that this method was effective in providing accurate estimation of flood 374 
volumes.  375 

 376 

Test Application 377 

Upper Granta Catchment  378 

This section sets out a trial application of the end-to-end forecasting methodology, based 379 
on a 2 km reach of the River Granta in Cambridgeshire, UK, which has a long history of 380 
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flooding. Full details of the reach and catchment hydrology are presented in McMillan 381 
(2006). The catchment is characterized by agricultural land with gentle gradients and lies 382 
on a chalk aquifer overlain by Boulder Clay. Channel widths through the study reach are 383 
typically 5-10 m with slopes in the order of 0.5% and thus within the appropriate limits 384 
for a kinematic approximation of channel hydraulics (Woolhiser and Ligget, 1967). The 385 
study reach straddles the town of Linton which has been frequently affected by severe 386 
flooding, most recently during October 2001. In this event, flooding occurred when 90 387 
mm of rain fell in 17 hours onto an already raised water table and caused extensive 388 
damage to 72 properties, including key historic buildings in the town centre. Estimates of 389 
the return period for this event range from 100 – 400 years (Halcrow, 2005; McMillan, 390 
2006). Records from this event were used to parameterise the floodplain inundation 391 
model; 15-year rainfall and discharge records from the catchment were used to create the 392 
stochastic rainfall model and to assign performance values for each rainfall-runoff model 393 
parameter set. The aim of the trial was to allow inundation hazard mapping for long 394 
return-period events, and therefore rainfall series of 1000 years were used. These were 395 
then processed to obtain predictions of discharge at yearly return periods up to 1000 396 
years, and inundation extent at a range of return periods: 10, 50, 100, 500 and 1000 years. 397 

 398 

Results 399 

Discharge Prediction 400 

The discharge series produced from the coupled stochastic rainfall and rainfall-runoff 401 
models were used to produce cumulative distributions of discharge, plotted in Figure 1A, 402 
and shown in detail in Figure 1B for comparison with the 2001 flood. 403 

 404 
 405 
 406 
Figure 1:  Modelled Discharge: Return Period Relation. A. Full Range. B. Detail. Dashed Lines 407 

show (a) Discharge associated with 2001 flood, with return period estimated from 408 
median and quartiles and (b) Discharge associated with 100-year flood. 409 

 410 

The results demonstrate the high level of uncertainty associated with predictions made 411 
using the simulated rainfall series and rainfall-runoff model. For example, the 90% 412 
confidence interval for the 100-year flood discharge is 14.8 - 48.0 m3s-1 (Figure 1B), a 413 
large uncertainty in terms of flood hazard or in the cost-benefit ratio of any flood 414 
protection works. Similarly, estimates the return period of the October 2001 flood (20.5 415 
m3s-1)  range from 7 to 146 years between the 5% and 75% quartiles (the return period 416 
estimated from the upper 90% bound was not captured).  417 

 418 

Hydrograph Formation 419 

The hydrograph for each return period (10, 50, 100, 500 and 1000 years) at the 5%, 50% 420 
(median) and 95% percentiles was formed according to the empirical flow-volume 421 
relationship found (Equation 11). 422 
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Volume = 36720 * Flow1.35 423 

Equation 11: Regression Relationship between Peak Flow (m3s-1) and Volume (m3) 424 

The strong correlation found between flow and volume (correlation coefficient 0.90) 425 
justifies the use of a standardised hydrograph based on peak value. As an example, the 426 
hydrographs for the 1000-year flood are shown in Figure 2. 427 

 428 
 429 
 430 
Figure 2:  Design Hydrographs for the 1000-year return period, at the 5%, 50% and 95% points 431 

of the cumulative distribution  432 
 433 

 434 

Inundation Extent  435 

The design hydrographs give discharge series for the gauging station at Linton, upstream 436 
of the town centre, forming the upstream boundary condition for the hydraulic model. 437 
Following model evaluation, the floodplain code was implemented at 10 m resolution 438 
using the sub-grid porosity treatment for maximum computational efficiency. The 439 
channel friction coefficient (Manning’s n) was set at 0.05 m-1/3s, which gave optimal 440 
performance judged using a multi-criteria validation for the 2001 flood event. This 441 
validation was based on a weighted combination of performance measures in hydrograph 442 
simulation and inundation behaviour. Downstream hydrographs were judged according to 443 
accuracy of peak discharge magnitude and timing; inundation simulations were validated 444 
using a fuzzy performance measure which tested flood depth prediction for each 445 
inundation property, while allowing a margin of error for perceived reporting 446 
inaccuracies. For each return period, the hydraulic model was used to produce an 447 
inundation simulation relating to the design hydrographs for the 5%, 50% and 95% points 448 
of the distribution of peak discharge magnitudes. The results are shown in Figure 3. 449 

 450 
 451 
 452 
Figure 3:  Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative 453 

distribution of peak discharge magnitudes  454 
 455 

 456 

Communication of Results 457 

The spatial pattern of inundation extent evident in Figure 3 is ultimately constrained by 458 
the valley morphology, so that despite large differences in the peak discharges of the 459 
extreme return periods, the maximal inundation envelope remains comparatively 460 
consistent. This is due to relatively steep topography at the natural boundaries of the 461 
floodplain which serves to constrain flood waters. However, it is also at this boundary 462 
that accuracy in prediction becomes more critical, as beyond the edge of the floodplain, 463 
density of housing increases dramatically. On the floodplain itself, there are few 464 
buildings, as waterlogged land and frequent flooding have constrained construction. 465 
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This illustrates the importance of presenting results in a method sensitive to the intended 466 
use. Mapped inundation extents (Figure 3) would be useful for strategic and emergency 467 
planning at the local scale, e.g. preparation of emergency evacuation and traffic routing 468 
plans. However, for applications such as a benefit-cost analysis for a structural flood 469 
defence scheme, derived statistics such as number of houses flooded may present the 470 
trends more clearly (Figure 4). Further analysis could count only houses flooded beyond 471 
the protection limits of sandbags or removable floodgates.  472 

 473 
 474 
 475 
Figure 4:  Number of houses flooded (to any depth) as a function of return period and percentage 476 

point of peak discharge distribution  477 
 478 

 479 

Figure 4 demonstrates a sharp rise in the number of properties flooded between the 10-480 
100 year events; then a smaller increase up to the 1000-year event. This might suggest a 481 
threshold return period beyond which the expenditure involved in containing the Granta 482 
would not be realised in terms of damage saving. A worthwhile extension of the current 483 
work would be to link the properties in the area to a valuation, perhaps through zoning by 484 
postcode, in order to estimate the financial cost of each flood event. This could be 485 
achieved using depth-damage curves tailored to building type. Depth mapping would also 486 
be useful to aid identification of areas of high risk to life and greater damage to property. 487 
Calculated variables such as area and number of houses inundated could be used directly 488 
within the UK government system for assessment of future flood defence engineering 489 
works (DEFRA, 2002). 490 

 491 

 492 

Constraining Uncertainty in End-to-End Modelling 493 

Constraining Uncertainty in Discharge 494 

Quantifying the uncertainty in discharge prediction and analysing its provenance offers 495 
the scope to determine the main sources of uncertainty, and identify means of uncertainty 496 
reduction through refinement of model structure, parameterisation or boundary condition 497 
specification. Two example uncertainty sources are considered here. 498 

Effects of Uncertainty in Rainfall Series 499 

Part of the uncertainty in discharge is due to the stochasticity of precipitation patterns that 500 
force the model chain, simulated here via the ensemble of 1000 climate scenarios. To 501 
consider the reduction in uncertainty if improved knowledge of future rainfall behaviour 502 
was available, we simulate the extreme case where the full 1000-year rainfall series is 503 
known exactly. The Monte Carlo simulations are re-run using a single random ‘correct’ 504 
series, with each rainfall-runoff model parameter set as before (Figure 5). 505 

 506 



 14 

 507 
 508 
Figure 5:  Modelled Discharge: Return Period Relation, using single rainfall series. (a) Full 509 

Range. (b) Detail. Dashed Line shows discharge associated with 2001 flood, with 510 
return period estimated from median and quartiles. 511 

 512 

 513 

The return period-flow curves are less smooth than previous results, representing the 514 
increased dependence on model response to particular rainfall events. The 90% 515 
confidence bounds for the 100-year discharge are only slightly reduced, from [14.8, 48.0] 516 
to [14.8, 42.4] m3s-1 (Figure 5B), indicating that rainfall uncertainty has only a small 517 
impact on long term discharge prediction. However, the estimate of a particular quantity 518 
may be altered by a significant margin, e.g. the 2001 flood is estimated as having a return 519 
period of 47.4 years instead of 33.7. The limited effect of uncertainty in precipitation 520 
patterns however ultimately reflects the derivation of the rainfall model from a single 15-521 
year gauged record. A longer rainfall series might contain implicit non-stationarity that 522 
exerts a significant control on discharge response.  523 

Effects of Uncertainty in Rainfall-Runoff Model 524 

To test the effect of uncertainty in rainfall-runoff model parameterisation, the suite of 525 
model simulations were rerun, using the original set of rainfall series, but the single 526 
rainfall-runoff parameter set with the optimal value of the performance measure (Figure 527 
6). This mimics the situation where there is no uncertainty in the rainfall-runoff model 528 
parameterisation.  529 

 530 
 531 
 532 
Figure 6:  Modelled Discharge: Return Period Relation, using optimised rainfall-runoff model 533 

parameters. (a) Full Range. (b) Detail. Dashed Line shows discharge associated with 534 
2001 flood, with return period estimated from median and quartiles. 535 

 536 

 537 

In this situation, discharge estimate uncertainty is greatly reduced, e.g. the 90% 538 
confidence interval for the 100-year flood discharge is constrained from [14.8, 48.0] to 539 
[17.5, 20.8] m3s-1, a significant advantage for any planning of flood defence works. 540 
However, this analysis must not be confused with the results of using a single set of 541 
parameters without justification. Many of the alternative parameter sets had a 542 
performance value very close to the optimum, giving little reason to suppose that one set 543 
should be accepted against the rejection of all others. Discounting these other possible 544 
flow values may have particularly damaging consequences as the confidence limits fall at 545 
the lower end of the range of the wider bounds; the optimum set does not necessarily give 546 
values bracketing the median of the complete uncertainty analysis.  547 

Propagating Uncertainty through Inundation Simulations 548 

The preceding section analysed the relative effects of uncertainty in the rainfall input and 549 
rainfall-runoff model parameters. To understand how such changes in discharge 550 
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prediction distributions would affect inundation predictions in the coupled model 551 
structure, the uncertainty was propagated through the hydraulic model, as before (Figure 552 
7). The 100-year event only was considered, as a standard for comparison.  553 

• Plot (a) shows the original analysis of the 100-year flood, repeated for comparison.  554 

• Plot (b) shows the significant reduction in uncertainty of flood boundary position 555 
possible if the rainfall-runoff model parameters could be defined exactly. Although this is 556 
unlikely due to equifinality in parameter sets, caused by model structural deficiencies and 557 
limited calibration data, it demonstrates that significant benefits could be achieved by 558 
further work to reduce the number of models considered behavioural.  559 

• Plot (c) shows the small reduction in uncertainty achievable if the future rainfall 560 
patterns were known exactly, however the relatively minor impact compared with that of 561 
Plot (b) suggests that improvements in rainfall-runoff modelling should take precedence 562 
over improvements in rainfall characterisation.  563 

 564 
 565 
 566 
Figure 7:  Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative 567 

distribution of peak discharge magnitudes for the 100-year flood, using three 568 
alternative methods to calculate uncertainty bounds. 569 

 570 

 571 

Sensitivity to Inundation Model Parameterisation 572 

As discussed, uncertainty in the channel friction parameter used to calibrate the 573 
floodplain inundation model was not considered due to computational constraints. 574 
However, a decoupled ‘sensitivity analysis’ was undertaken to assess the relative scale of 575 
this uncertainty.  576 

For each return period, the 50% (median) hydrograph was routed through the floodplain 577 
using channel friction coefficients of 0.04 and 0.06 m-1/3s, chosen to surround the 578 
previously selected optimum of 0.05 m-1/3s which represented a single, global maximum 579 
in the validation statistic response space. More extreme values were found to depress 580 
validation scores. Inundation envelopes from the 100-year flood (Figure 8) show that 581 
varying the friction parameter value within the specified range has a relatively small 582 
effect relative to the uncertainty sources previously considered. It should however be 583 
understood that a simplistic analysis of this kind cannot represent the nonlinear effects of 584 
uncertainty propagation through the model chain, and hence provides only a guide as to 585 
the likely effect of uncertainty on model results in a full application of the GLUE 586 
procedure to the coupled model system. 587 

 588 

 589 

 590 
 591 
 592 
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Figure 8:  Variation in inundation envelope: Comparison of (a) Uncertainty in rainfall and rainfall-593 
runoff model parameters and (b) Uncertainty associated with floodplain model channel 594 
friction parameter 595 

 596 
 597 
 598 

Comparison with Standard Analysis 599 

 600 

To illustrate the characteristic differences of the End-to-End FRA framework from 601 
conventional methodologies, the inundation predictions made using the new method are 602 
compared with those of a standard FRA, carried out by the UK Environment Agency 603 
which is responsible for flood management at the trial site (Bullen Consultants, 2002; 604 
Halcrow 2003; 2004). The methods used are those currently recommended in the Flood 605 
Estimation Handbook (Robson and Reed, 1999): a standard text which provides guidance 606 
widely used in planning scenarios and engineering applications. In brief, hydrographs are 607 
produced using a dual method. Firstly, hydrograph shape is produced by routing a design 608 
rainfall event through a rainfall-runoff model. Five flood events during the period 2000-609 
2001 are used to estimate the parameters of this model. Secondly, discharge magnitude is 610 
calculated using statistical methods. The discharge record is augmented using a ‘pooling 611 
group analysis’ which identifies hydrologically similar catchments based on catchment 612 
area, average annual rainfall and baseflow regime; priority is given to catchments close to 613 
the study site. In the case of Linton, 17 other sites are used, giving a combined total of 614 
486 years of record. Using this extended data set, the flood frequency curve is 615 
constructed by fitting a 3-parameter Generalised Logistic Distribution to the data, with 616 
cumulative distribution function as follows:  617 
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 The resulting discharge estimate is used to scale the hydrograph from the rainfall-runoff 619 
model. This provides an upstream boundary condition for a 1D hydraulic inundation 620 
model, based on cross-sectional data and created using ISIS modelling software 621 
(Wallingford Software Ltd, 2006), to route flow along the channel and overbank.  622 

The contrasting nature of the techniques is reflected in the predictions of the 100-year 623 
discharge: 10.2 m3s-1 in the standard model versus 25.1 m3s-1 median prediction in the 624 
end-to-end model, which manifest themselves in the inundation envelope forecasts 625 
(Figure 9). The difference stems from the constrained design event methodology of the 626 
standard analysis, such as an inability to include information on antecedent wetness 627 
conditions. However most notable is an over-reliance on the gauged floodplain record in 628 
the statistical flood frequency analysis, which does not allow for measurement errors such 629 
as drowning of flow gauges during flood, as is known to happen at the trial site. In 630 
contrast, the end-to-end technique is able to compensate for such malfunctions using the 631 
correctly recorded rainfall data together with the calibrated rainfall-runoff model. This 632 
situation demonstrates the valuable way in which an integrated, end-to-end methodology 633 
can add value to short or censored methods by using models to capture information on 634 
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physical catchment processes. In addition, a more complex pattern of inundation is 635 
predicted when using the new method with a 2D model, showing flow paths within the 636 
floodplain and high resolution definition of the flood boundary.  637 

The large difference in predictions of flood envelope has the potential to lead to very 638 
different approaches to flood risk mitigation. The representation of uncertainty within the 639 
end-to-end forecast also enables a more comprehensive consideration of possible flood 640 
scenarios which is not possible using the results of the standard analysis technique. 641 

 642 
 643 
 644 
Figure 9: Comparison in 100-year flood envelopes predicted using the proposed End-to-End 645 

method versus a standard statistical method using the 1D ISIS flood model 646 
 647 

 648 



 18 

Discussion 649 

This paper set out to design a novel, flexible, process-based FRA methodology, relying 650 
on a chain of coupled models running within a proven uncertainty-estimation structure. A 651 
number of key findings are made. First, the benefits of extending the flood frequency 652 
analysis beyond discharge magnitude estimates to include inundation simulations were 653 
demonstrated. By integrating a hydraulic model into the coupled model cascade, 654 
hydrologists gain the opportunity to explore the relationships between discharge, 655 
inundation extent, flow paths, and likely damage to infrastructure and buildings. This is 656 
especially relevant in the light of recent trends away from structural flood defences and 657 
towards a greater reliance on integrated catchment management approaches which aim to 658 
manage a ‘functional floodplain’. 659 

An important aspect of the modelling procedure is the rejection of the principle of using 660 
deterministic forecasts. These are replaced by results in the form of distribution quantiles, 661 
which are presented as hazard maps to allow an intuitive interpretation of the effects of 662 
uncertainty on flood forecasts. Maps showing the confidence intervals allow an 663 
assessment of which areas of the floodplain are most sensitive to uncertainty in discharge 664 
predictions due to channel shape and local topography. Although the inclusion of 665 
uncertainty estimates in a flood frequency analysis is still a relatively rare occurrence 666 
outside academic research, its importance was demonstrated here: a deterministic model 667 
using a single set of rainfall-runoff model parameters was shown to give biased and 668 
under-predicted estimates of flood hazard. In this study, computational restraints forced a 669 
reduced set of hydraulic model simulations, however it is hoped that in the future the 670 
methodology could be extended to include uncertainty in hydraulic model 671 
parameterisation as part of the full GLUE application. While it would not be practical to 672 
propagate predictions from each discharge series through the hydraulic model, a concept 673 
such as that of functional similarity (Pappenberger et al., 2005) might be used to reduce 674 
computational effort. This complementary approach makes alternative choices to the 675 
method outlined here: rather than simplifying the coupling procedure between 676 
consecutive models, instead the number of rainfall-runoff model parameter sets is 677 
severely restricted, by classification according to the type of hydrograph forms produced.  678 

A wider reporting of the effects of uncertainty on model predictions may also provide an 679 
impetus for further data collection in order to constrain uncertainty. By emphasising that 680 
observed floods may fall within wide prediction bounds rather than the more simplistic 681 
interpretation that the deterministic model is ‘wrong’, it becomes more obvious how 682 
additional data could aid future predictions. In this study, results showed that the major 683 
cause of uncertainty was equifinality in rainfall-runoff model parameterisation, and 684 
therefore suggests that future effort might best be directed at reducing the range of 685 
behaviour associated with the set of behavioural rainfall-runoff models. These more 686 
detailed conclusions are, however, dependant on the models and coupling methods 687 
chosen for the trial study, also the range of parameters and uncertainty sources that were 688 
analysed. 689 
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Conclusion 690 

This paper presents the argument for process-based FRA methodology based on 691 
continuous simulation within the context of a chain of coupled models. Taking advantage 692 
of advances in data provision, and reduced complexity modelling techniques, high-693 
resolution flood inundation simulation is included as part of the model chain. Such a 694 
strategy is highly desirable in an age where non-stationarity of the flood generation 695 
process, together with changing approaches to flood mitigation, have rendered traditional 696 
statistical FRA techniques increasingly obsolete.  697 

Uncertainty estimation was included as an integral part of the procedure, to assess 698 
stochasticity and parameter uncertainty within the model chain. Results from a trial flood 699 
frequency analysis showed that significant uncertainty was present in estimates of flood 700 
extent, and indicated where future work might reduce this most effectively. The current 701 
use of deterministic flood risk analyses was found to be unduly restrictive and likely to 702 
give biased estimates of flood risk. 703 

 704 
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 877 

Figures 878 

 879 

Figure 1:  Modelled Discharge: Return Period Relation. (a) Full Range. (b) Detail. Dashed Lines 880 
show A. Discharge associated with 2001 flood, with return period estimated from 881 
median and quartiles and B. Discharge associated with 100-year flood. 882 

 883 
Figure 2:  Design Hydrographs for the 1000-year return period, at the 5%, 50% and 95% points 884 

of the cumulative distribution  885 
 886 
Figure 3: Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative 887 

distribution of peak discharge magnitudes  888 
 889 
Figure 4:  Number of houses flooded (to any depth) as a function of return period and point of 890 

peak discharge distribution  891 
 892 
Figure 5:  Modelled Discharge: Return Period Relation, using single rainfall series. (a) Full 893 

Range. (b) Detail. Dashed Line shows discharge associated with 2001 flood, with 894 
return period estimated from median and quartiles. 895 

 896 
Figure 6: Modelled Discharge: Return Period Relation, using optimised rainfall-runoff model 897 

parameters. (a) Full Range. (b) Detail. Dashed Line shows discharge associated with 898 
2001 flood, with return period estimated from median and quartiles. 899 

 900 
Figure 7:  Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative 901 

distribution of peak discharge magnitudes for the 100-year flood, using three 902 
alternative methods to calculate uncertainty bounds. 903 

 904 
Figure 8:  Variation in inundation envelope: Comparison of (a) Uncertainty in rainfall and rainfall-905 

runoff model parameters and (b) Uncertainty associated with floodplain model channel 906 
friction parameter 907 

 908 
Figure 9: Comparison in 100-year flood envelopes predicted using the proposed End-to-End 909 

method versus a standard statistical method using the 1D ISIS flood model 910 
 911 
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 914 
Figure 1:  Modelled Discharge: Return Period Relation. A. Full Range. B. Detail. Dashed Lines 915 

show (a) Discharge associated with 2001 flood, with return period estimated from 916 
median and quartiles and (b) Discharge associated with 100-year flood. 917 
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 921 
Figure 2:  Design Hydrographs for the 1000-year return period, at the 5%, 50% and 95% points 922 

of the cumulative distribution  923 
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 925 
Figure 3:  Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative 926 

distribution of peak discharge magnitudes  927 
 928 
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 930 
 931 
Figure 4:  Number of houses flooded (to any depth) as a function of return period and percentage 932 

point of peak discharge distribution  933 
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 936 
Figure 5:  Modelled Discharge: Return Period Relation, using single rainfall series A. Full Range. 937 

B. Detail. Dashed Line shows discharge associated with 2001 flood, with return period 938 
estimated from median and quartiles. 939 
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 941 
Figure 6:  Modelled Discharge: Return Period Relation, using optimised rainfall-runoff model 942 

parameters. A. Full Range. B. Detail. Dashed Line shows discharge associated with 943 
2001 flood, with return period estimated from median and quartiles. 944 
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 947 

Figure 7: Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative 948 
distribution of peak discharge magnitudes for the 100-year flood, using three alternative 949 
methods to calculate uncertainty bounds. 950 

 951 
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 953 
Figure 8:  Variation in inundation envelope: Comparison of (a) Uncertainty in rainfall and rainfall-954 

runoff model parameters and (b) Uncertainty associated with floodplain model channel 955 
friction parameter 956 
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 958 
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 959 
 960 
 961 
Figure 9: Comparison in 100-year flood envelopes predicted using the proposed End-to-End 962 

method versus a standard statistical method using the 1D ISIS flood model 963 
 964 


