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Abstract

This paper presents the case for an ‘End-to-Enddlinundation modelling strategy: the
creation of a coupled system of models to allowtiooious simulation methodology to be
used to predict the magnitude and simulate thetsfief high return period flood events.
The framework brings together the best in currdmhking on reduced complexity
modelling to formulate an efficient, process-basedhodology which meets the needs of
today’s flood mitigation strategies. The model oh# subject to stochasticity and
parameter uncertainty, and integral methods tonatlee propagation and quantification
of uncertainty are essential in order to produdrisd estimates of flood risk.

Results from an experimental application are casid in terms of their implications for
successful floodplain management, and comparechstgdie deterministic methodology
more commonly in use for flood risk assessment iegipbns. The provenance of
predictive uncertainty is also considered in ortteidentify those areas where future
effort in terms of data collection or model refinamh might best be directed in order to
narrow prediction bounds and produce a more préciseast.
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Introduction

Modern Responses to Flood Risk

In recent years, significant changes in scientifiablic and government opinion have
brought about a reappraisal of flood managementyah Britain. Costly failures of
structural flood defence measures have highligtitedinadequacy of historical designs
when faced with the changing nature of river fldwakacteristics due to climate change,
urbanisation and land-use change on floodplains fA&s been matched by a broadening
of the concept of flood risk assessment from pueggnomic considerations to cover
wider social and environmental values (DEFRA, 2008)response to these drivers,
current governmental policies on flood preventiowl anitigation measures increasingly
favour ‘soft’ solutions centring on the restorati@mhancement or creation of the natural
functions of the floodplain, over ‘hard’ engineegisolutions.

The Need for an Updated Approach to Flood Risk Assessment

Non-Stationarity of the Flood Generation Process

Today we are in a period of what is widely consédeto be enhanced flood risk caused
by the joint human factors of climate change amdldase change (Wheater, 2006). Non-
stationarity is exhibited in the recent precipatirecord (Dakt al., 1997; Easterlingt

al., 2000; Groismaset al., 2004; Huntington, 2006; Osborn and Hulme, 2(&12pgeet

al., 2003), suggesting an intensification of the balgical cycle, and giving credence to
GCM model predictions of increased frequency ofvigeainfall events (Arnelkt al.,
2001; Arnell and Reynard, 1996). These results beagompounded by aspects of land-
use change which reduce the ability of catchmemtstdre flood water and to attenuate
flood peaks.

If non-stationarity is accepted as existing in tlo®d generation process, this violates a
critical assumption of the mathematical theory hdhsonventional, statistical flood risk
assessment. In order to derive the extreme vakighdition which these methods fit to a
data series of recorded flood peaks, floods musadseimed to occur as independent,
identically distributed, random events from a smgditationary distribution. Even where
recurrence intervals are regularly updated with rdata, the non-stationarity of the
process over the data collection period invalid#tes assumption.

Distributed Flood Risk Mapping

Historically, the chief focus of flood risk asse&sh (FRA) has been the derivation of
discharge or stage for a given set of return psriodflecting a reliance on structural
flood defence works whose aim was to contain fifbods within the designated channel.
Soft engineering solutions, floodplain restorataomd homeowner responsibility demand
instead spatially distributed flood risk informatioTo cater for this demand, 1D
hydraulic models are typically extended to providasin-fill' water elevation mapping
using either extended cross-sectional data or wanktof floodplain storage cells (e.qg.
USACE, 2006). This method typifies a more simptistiew of the floodplain as purely a
storage reservoir.

In contrast, flood defence circumvention or failudkiring extreme events has
demonstrated the connectivity of channel and flémidpas a coupled system during
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times of flood. The hydraulic approximations magealilD model prevent representation
of lateral momentum transfer between the river enedfloodplain, and cannot account
for the pressure gradients which force water flawsighly variable rates between the
two areas. The increased expectation of flood fldwsugh complex urban areas, due to
changes in flood defence strategy, requires flasd mapping based on 2D models
which are capable of providing a dynamic repregemtaof water transport onto and

around the floodplain.

Development of a Process-Based Continuous Simulation
Methodology

This paper proposes a preliminary structure for @emn FRA methodology which,
motivated by a desire to address the deficienciestandard FRA techniques outlined
above, seeks to combine the benefits of the lategtelling techniques to produce an
efficient, integrated approach to current FRA reguients. A central aim for the
structure was that it should embody a process-bagptbach; this greatly increases the
predictive power of the system in response to nayalit and boundary conditions and
allows the structure and parameters of the systebe tmodified to reflect knowledge of
changing conditions of climate and land-use. Ireotd achieve this, the FRA structure is
underpinned by the technique of continuous simuati

Continuous simulation uses the available precipmatecord for the catchment as a basis
for creation of long synthetic rainfall series. $heseries are used as input to a rainfall-
runoff model to produce the corresponding dischagges, from which extreme event
frequencies may be calculated explicitly. The mdthoovides continuous soil moisture
accounting which gives implicit consideration oftesedent wetness conditions in the
catchment. Using this flexible method, climate ammmight be represented via a
modification of the rainfall frequency distributi®rusing estimates of the effects of
climate change on particular aspects of rainfaltgpas. Land-use change could be
included via a modification of the rainfall-runafiodel structure or parameters, such as
an increase in runoff coefficient. Although contug simulation has previously been
used to forecast the discharge magnitude of extferads (Cameromt al., 1999; Chetty
and Smithers, 2005; Franchini et al., 2000; Hashetndl., 2000; Maskey et al., 2004;
Onof et al.,, 1996; Pandit and Gopalakrishnan, 1986} in rare cases extended to
applications in design of structural floodplain elede measures (Hsieh et al., 2006) and
flood mapping studies (Faulkner and Wass, 200%)ast not been considered suitable for
integration into the standard FRA framework duéh®computational overhead required.
However, by using a relatively simple rainfall-rdhmodel, it proves to be a practical
and valuable tool.

The new structure is also defined by its integratedd-to-End’ approach to FRA. As
management plans become catchment- or basin-witleeinscope, so too should FRA
methods be spatially and temporally ambitious. Hd pf the catchment acts in isolation;
the process-based approach attempts to replicateotinected system through a cascade
of coupled models representing precipitation reginaénfall-runoff characteristics and
floodplain inundation behaviour. Discharge estim&dtem the continuous simulation of
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runoff are used to drive a 2D model of floodplaydtaulics which utilises new, high-
resolution elevation data to enable urban floodpfaodelling at the smallest scales and
paves the way for additional modules for vulneigbiind damage assessment. These
would be used to calculate the social and econampeacts of floods, for example using
information on building use or value (Apetlal., 2004; Merzet al., 2004), and could be
implemented within a risk-based sampling technitmeeduce computational burden
(Dawsonet al., 2005). Finally, the coupled model structure mayrin within a proven
uncertainty estimation framework, to allow expliaflculation of the cascading
uncertainties.

This technique has previously been tested withiregduced stochastic-rainfall-model:
rainfall-runoff-model system (Blazkova and Beve02; 2004; Cameron et al., 2000;
Kuchment and Gelfan, 2002; Lamb, 1999). Uncertagslymation within a full ‘End-to-
End’ approach is already being successfully apgbeglvent-based simulation (De Roo et
al., 2003; Pappenberger et al., 2005; Sattler aadi€rsen, 2005), although these authors
note the computational limitations currently placad the method. This study places
particular emphasis on the need to integrate usiogytestimates into model predictions
targeted for end-user communities.

Modelling and Methods

Overview

A coupled model chain is created consisting of atsstic rainfall model, a rainfall-
runoff model and a floodplain inundation model. §kection presents an outline of each
model, followed by the coupling methodology. Comguain models are chosen to
represent the latest advances in reduced-complmethods, however flexibility is key
to the End-to-End FRA ethos and models could beedaaccording to individual case
attributes.

The model descriptions given here are necessarigf; full detail may be found in
McMillan (2006) and McMillan and Brasington (2007).

Component Models

Stochastic Rainfall Model

All stochastic rainfall generation models rely on iitial decomposition of rainfall
records to identify frequency characteristics afrst data (e.g. depth, duration and
intensity), which are then used to parameterisaiafall generation mechanism. A
profile-based method was chosen, for ease of imgikation and a desire to reduce the
need for parameterisation by use of a ‘data-basexthod. The method splits the total
storm depth into time-step depths by using a godit mass curve (e.g. Arnaud and
Lavabre, 1999; Beven, 1987; Blazkova and Beven220@davidet al., 1991; Cameron
et al. 1999; 2000; Cernessa al., 1996; Diaz-Granadost al., 1984; Eagleson, 1972;
Hebson and Wood, 1982).

The distributions of storm intensity, duration amder-arrival time are collated and
smoothed using Gaussian kernel density estimaBdaefman, 1982; 1986; Antoniadis,
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1995), with modifications made for skewed or didocwrous distributions as appropriate.
In order to create the stochastic storm sequeacelom samples were drawn from these
distributions, and a storm created using a prafieevn randomly from the storm record.
Two modifications were made to this basic modeludtre to improve model
performance, as follows.

Firstly, storms may be segregated by season ifackexistic differences exist (e.g.
Blazkova and Beven, 2000; Walshaw, 1994). Herelia ispo two seasons was made
(Feb-Aug, Sep-Jan) to reflect seasonality in rdiinfatals. Secondly, the storm
characteristics showed a negative correlation bEtwatensity and duration, which
should be recognised within the model structureptimise performance (Camerenal.,
1999; 2000; Goett al., 2000; Kurothest al., 1997). The empirical intensity distributions
were therefore split by duration into 5 classe®tgetampling, this method being chosen
in preference to the use of a bivariate intensugaton sampling distribution to avoid
limitation of model stochasticity. An additional dification to extend the tail of the
intensity distributions using a fitted extreme \aldistribution, in order to accommodate
the possibility of more intense events than thostheé recorded sequence, was rejected
after trials showed that it caused overestimatioobserved maximum rainfalls.

Rainfall-Runoff Model

A transfer function methodology was chosen to pitevhe rainfall-runoff component of
the model chain. This popular class of models patgs from unit hydrograph theory and
the Nash Cascade (Nash, 1959), and representsatblenent as a linear system of
interconnected flow pathways, modified by a nordiné&ransform to represent runoff
generation. This model type combines the benefid well-conditioned nature of a
lumped model while allowing knowledge of catchmstnticture to be incorporated into
model definition. Various versions of this modeVadeen implemented (e.g. Jakeman et
al., 1990; Young and Beven, 1991; 1994 and a comemsve review by Young, 2003);
the version described by Sefton and Howarth (1988&) used here.

The equations governing the non-linear rainfalhgfarm are as follows:

u, =R (S +S,)/2 @)

- 1
St - CRI + |:1 Z'(T- ):|S—1 (2)

r(t)=r, exf20f -T;f) (3

Whereuy, is the volume of effective rainfall at timteresulting from input rainfalR. S

represents the catchment storage index at tim€T;) is the recession rate & at

temperaturdl; which depends on the recession rate at 2)2Che parametet ensures
equality of effective rainfall and runoff volumesParameter f modulates
evapotranspiration with temperature, requiringraout temperature series.

The linear routing module of the rainfall-runoff de uses a transfer function to convert
effective rainfally; into flow Q. The most usual form of transfer function to becsijel

for small catchments consists of two parallel paysvrepresenting quickflow and

slowflow. This choice of model structure was acedptor the study catchment, after
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consideration of physical catchment characteristind gauging carried out in the field,
together with model trials. The model structurshiswn in Equation 4.

b, +b, ™ B B.
Q= 1 ; —tlJl = Wy = ot = | M-
—q ¥ -a,lx l-a,lz" 1l-alz

J

Equation 4: Two-component transfer function structure

Where 7' is the backward shift operator, i.6’Q = Q... The parameters that must be
estimated areq, Ps, 0q s, O (where suffix g represents quickflow parameters, s
represents slowflow parameters), given calibratiate consisting of effective rainfalls
{ug and flows {Q}. The parameters for both non-linear and lineardeloparts are
estimated using the GLUE procedure (Beven and Birdl892) outlined below.

Floodplain Inundation Model

The floodplain inundation model chosen for this laggpion takes advantage of
significant recent progress in reduced complexitgdelling, achieved by directly

coupling 1d channel hydraulic models with 2d rasttarage cell approximation for

floodplain flows (e.g., Bates and De Roo, 2000)sTdpproach offers order of magnitude
gains in computational efficiency over more compfmite element and volume codes
(Aronica,et al., 2002; Horritt and Bates, 2001b).

The channel model uses the kinematic approximatiothe Saint-Venant equations,
which describe one-dimensional unsteady open chafioe. They consist of a
continuity equation and a momentum equation (Equatb and 6). Variables used are:
Q, flow; A, cross-sectional ared,; time; x, horizontal positiony, vertical position;g,
gravity; S, bed slope§, friction slope.

Continuity Equation: Q + 9A _ 0 ®)
ox ot

Momentum Equation: 1 9Q 1.0 ) . gﬂ g5, -s) =0 ©
A ot A ox| A ox =
Local” ——— Prasre  poce  pooon
Acceleration iggéeac:[;tli%n Force Term Term

Term Term

Term

The kinematic approximation uses the full contipgjuation, but only the gravity and
friction force terms in the momentum equation, eegghg pressure and acceleration
terms.

The floodplain model uses a raster cell approaahiths been popularised by Bates and
De Roo (2000) and De Ra al. (2000) with their model LISFLOOD-FP; similar idea
have also been used by Estrela and Quintas (198#1Ramanowiczt al. (1996), all
building on methods suggested by Curgjeal. (1976). The model uses numerical
discretisation in space and time, as with the cebmodel. The floodplain is treated as a
grid of square cells, with flow allowed between ahnected cells. As in the channel



222 model, continuity and momentum equations are soliecalculate flow rates. The
223 continuity equation relates flow across cell bouretato the volume stored in the cell
224  (Equation 7); the momentum equation uses Mannibgs to relate flux to surface slope
225 and hydraulic radius (Equation 8).

226
.. . . Qixfl,j_QiX,jJrQiy,j—l_Qiy,jy
Continuity Equation: ne = Sy (7)
. i h3t3 (i1 _pii
Momentum Equation: Q. = T(%)Ay (8)

227 Whereh" is water depth at cell (i,jJiow is free water depth between two cellg,andAy
228 are the cell dimensions,is Manning'’s friction coefficient, an@y andQy are the flow
229 rates in two directions between cells.

230 Two major modifications are made to this basic nhatieicture; both are described more
231 fully in McMillan and Brasington (2007). Firstlyhé numerical stability of the model is
232 improved using a redesigned function to limit estes flows between cells, which occur
233 particularly in areas of deep, ponded water dudéause of numerical approximations to
234 the governing differential equations. This limiegmed to improve on that designed by
235 Hunteret al. (2004), by recognising the interaction of multietitional flow paths and
236 hence retaining information on preferential flomtpaays within the floodplain. This
237 was achieved by imposing a total outflow limit oack cell to be split proportionally
238 between the multiple outflows; implicitly considegi these flows as dependant processes.
239 The limiter form is shown in Equation 9. The useadfmiter removes model sensitivity
240 to floodplain friction, a pattern previously notéd storage cells models, and arises
241 Dbecause the form of the flow limiter becomes theni@ant control on floodplain flows
242 (Romanowicz and Beven, 2003; Hungerl., 2004; Hallet al., 2005).

. . . f gL i ygi-Li i imis i
L= i { Q! min{HET HY R R Jvay ( Q' h" Axay
243 Qx =min Qx ’ \QL,J' +QL—1,J' +Qiy’j +Q)1/,j—1 1+1/( Number 6f Dutflows) 4 \(QL'j+QL_l'j+Qiy'j+Q§'j_l)W (9)
; Max(btal Butflowbefor elSurfacel ;
Proportionof [(flow gradientiisHeversed gutﬂoegﬁmedu

244  Secondly, the model is upgraded to allow sub-gradieh parameterisation, in an attempt
245 to harness the wealth of terrain information camgdi within a LIDAR scan of a river
246 reach within an efficient model structure. Thisaghieved by using the concept of ‘cell
247 porosity’ to allow the use of sub-grid topographiformation within a coarse resolution
248 model. The porosity function quantifies the peregetof the assumed cell volume that is
249 available for water storage after accounting fob-gtid features; similarly modified
250 values of cell boundary cross-section area andedegerimeter are also defined. By
251 using this information to adjust the continuity amdomentum equations, model
252 behaviour may react to preferential flow directi@msl flow volumes in a way that is not
253 possible using a simple roughness coefficient. Mieéhod is designed to reflect the first
254  order controls on flow conveyance while enablingngations to be carried out at a
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computationally efficient resolution; Yu and Lar#06) demonstrate the potential of the
concept by using sub-grid scale information atsalgion half that of the model.

Model Coupling
Using GLUE in End-to-End Hydrological Modelling

The GLUE technique (Beven and Binley, 1992) is al for investigation of model
response and associated uncertainty, under eduifinaf model structure or
parameterisation. Based on principles from Bayesiatistics, the technique relies on the
computation of a 'likelihood' measure, an estinwitbow likely the model is to produce
acceptable simulations based on its performancedesgainst some observed data. The
model is run many times using many different patemeets (often chosen using Monte
Carlo analysis), and the predictions of each behasi model are weighted using a
normalised likelihood value. A cumulative distrilaut can then be calculated for each
prediction variable at each timestep, and hencetdes as required (Equation 10).

PQ <q)=>  L(O)wherex ={T|Q/ <q} (10

WhereQ is the predicted flow (or other variable) at titng is the observed flow®; is
the {" set of parameters for the mode(@;) is the likelihood value obtained when the
model is run using these parameters, &ds the predicted flow at time t using these
parameters. The advantages of the technique lidenability to make predictions of
uncertainties in highly non-linear systems where desumptions of traditional statistical
techniques prove too restrictive.

It is important to note that when estimating coefide limits using GLUE, the discharge
predictions at each timestep do not relate to glesiset of parameter values and hence a
single model realisation. Thus when applying GLUEcbupled models, uncertainty
bounds cannot be cascaded through the model dwriegeating the bounds for output
timeseries as a prediction relating to a singlepater set that may be input into the
following model. Instead, results relating to egmrameter set must be propagated
through the model chain individually, the resultiogmputational demands presenting
serious constraints on the number of dimensionsr avieich uncertainty can be
considered. Decisions therefore had to be maderderao restrict the scope of the
analysis, balancing the efficiency of the systerairg} the extent and accuracy of the
results.

Coupling of Rainfall and Rainfall-Runoff Models

The rainfall simulation model was derived using émal data rather than fitted
parameters, and therefore there is no explicit pater uncertainty. Instead, the
perceived uncertainty in a rainfall simulation tekto the choice of model type and the
inherent stochasticity of the model; one realisatd a rainfall series represents only a
single possible outcome. We therefore considemtieertainty in realisation of rainfall
series, together with the uncertainty of choiceairffall-runoff model parameters. Model
structural uncertainty is not considered here,caigh it is inherent in the choice of each
component model.
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Although the most comprehensive approach to uriogytastimation would be to search
these two sources of uncertainty as a 2D paramsetre (i.e. every rainfall realisation
coupled with every parameter set), this strategyuldvobe extremely costly in
computational terms. Instead, following Cameronakt (1999), independent random
selections are made from the two sets, and thig jdionte Carlo sample assigned a
performance weighting from the rainfall-runoff mbgarameter set since the weightings
of the rainfall simulations are deemed equal.

Coupling of Rainfall-Runoff and Floodplain Hydraulic Models

The rainfall-runoff model is used to process eamtes of simulated rainfall to yield an

estimate of channel discharge at the upstream laoynaf the inundation model. The

models must be coupled in such a way as to all@wtictertainty in discharge series to
be represented in the input to the floodplain hylicamodel; the aim being to achieve
inundation extent estimation at various return g#sj while specifying the uncertainty
associated with the predictions. The most complehnique for estimating this

uncertainty would be to route the discharge predichy each rainfall simulation /

rainfall-runoff model combination through the flqudin hydraulic model. Unfortunately

this is clearly not a practical proposition duetmputation restrictions.

However, by careful choice of assumptions with rdga the flow behaviour at the site,
efficient methods for estimation of inundation fueqcy are possible. Here, an approach
based on three key assumptions is proposed.

e First, it is assumed that the inundation extenatesl to a particular flow event is
independent of flow conditions prior to the timeadtich out-of-bank flow began. This is
justified due to the rarity of closely spaced floedlents, and allows modelling of
individual events to replace the need for contirsusimulation.

« Secondly, it is assumed that the frequency didiobuof inundation extent may be

characterised using an annual maximum series 6ov 8vents, rather than requiring a
peaks-over-threshold (POT) analysis. This is aamasle assumption given a long
simulated data series: Robson and Reed (1999) #taiwthe advantage gained by using
POT data can typically be acquired using one aafthli year of annual maximum data.

* A third assumption is made that the event in eaelr which causes the greatest
inundation is that which has the greatest instatdas peak discharge. This is based on
the premise that the magnitude of an event is a godication of other damaging
attributes of a flood such as over-bank volumeuwation (the strong peak flow : volume
relationship found in the test catchment is desctibn the results section). This
assumption is key to reducing processing time asstrm with maximum discharge in
each hydrological year can be easily identifiedcdntrast, identifying the storm causing
most inundation from a flow series would be a @raling and time-consuming task, and
might not be possible without carrying out the idation simulation in full.

A final decision was taken that uncertainty in loedtion of the floodplain model, i.e.
value of Manning’s n for channel friction, wouldtnoe part of the coupled uncertainty
analysis. If this were to be undertaken, then swhereturn period of interest, the design
event corresponding to each discharge series agahswould have to be propagated
through the inundation model with each possiblei@adf channel friction, giving rise to
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tens of thousands of simulations. This is not caanally feasible given that each
inundation simulation takes several hours to perf¢235 minutes benchmarked on a
Pentium 4, 3.2 MHz PC with 1.5GB RAM, based on dations with the optimal
channel friction coefficient, n = 0.05 m-1/3s). teed, by considering only the
uncertainty from the rainfall and rainfall-runoffogtels, the confidence bounds on the
design event magnitude may be translated directty gonfidence bounds on inundation
extent. A limited sensitivity analysis of the modekponse to uncertainty in channel
friction is, however, undertaken to provide a gawgfeits relative effects on the
inundation predictions. There is clear scope fag #dditional uncertainty source to be
more fully considered; however at present this $ffred analysis is thought reasonable
as unlike the strongly equifinal behaviour of thenfall-runoff model, the hydraulic
model calibration showed a unimodal performancéribigion with a single optimal
value when validated against combined inundatiahlytirograph data.

Process Methodology

Drawing on the assumptions outlined above, the gg®amethodology may thus be
described. Simulated rainfall series, of a lengbprapriate to the design event to be
estimated, are produced using the stochastic thimfadel. One series is generated to
correspond to each rainfall-runoff model parametty the number of which must be
chosen by the investigator. These sets are randomeéted by sampling from the feasible
parameter ranges. Each set is assigned a perfoenfdikelihood’) value corresponding

to its ability to correctly reproduce a flow recotd the test application described below,
the parameter sets are validated using an 11-y@afiall-flow record. The fit between

observed and predicted flow is tested using thererion (Nash and Sutcliffe, 1970),
and the parameter set is rejected for values < 0.6.

Each rainfall series is routed through the raiafatioff model run with the corresponding
parameter set. On completion of this step, a s@tyd#ar discharge estimates is therefore
available by reading directly from a listing of th@ximum flow in each simulated year.
For each rank position in the series, the set abibte realisations of discharge value is
ordered and associated with the parameter setrpaafwe value. A weighted cumulative
distribution of discharge for each of these retpemiods can therefore be created, and
upper and lower limits at the required confidermeel together with any other quantiles
produced by interpolation.

The discharge alone is insufficient to create tbes fhydrograph required for input into
the floodplain inundation model. The hydrograpithisrefore produced using a triangular
approximation, based on an empirical flow-volumdatienship derived for the
catchment, together with standard percentagesowf ¥iolume before and after the peak
Trials showed that this method was effective invalimg accurate estimation of flood
volumes.

Test Application

Upper Granta Catchment

This section sets out a trial application of thd-émend forecasting methodology, based
on a 2 km reach of the River Granta in CambridgeshiK, which has a long history of

10
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flooding. Full details of the reach and catchmeydrblogy are presented in McMillan
(2006). The catchment is characterized by agricalltand with gentle gradients and lies
on a chalk aquifer overlain by Boulder Clay. Chdmielths through the study reach are
typically 5-10 m with slopes in the order of 0.5%dahus within the appropriate limits
for a kinematic approximation of channel hydrauli@¢éoolhiser and Ligget, 1967). The
study reach straddles the town of Linton which haen frequently affected by severe
flooding, most recently during October 2001. Instleivent, flooding occurred when 90
mm of rain fell in 17 hours onto an already raiseater table and caused extensive
damage to 72 properties, including key historiddngs in the town centre. Estimates of
the return period for this event range from 10000 §ears (Halcrow, 2005; McMillan,
2006). Records from this event were used to paennset the floodplain inundation
model; 15-year rainfall and discharge records ftbencatchment were used to create the
stochastic rainfall model and to assign performaratees for each rainfall-runoff model
parameter set. The aim of the trial was to allownohation hazard mapping for long
return-period events, and therefore rainfall seae4000 years were used. These were
then processed to obtain predictions of dischatggearly return periods up to 1000
years, and inundation extent at a range of retario@s: 10, 50, 100, 500 and 1000 years.

Results

Discharge Prediction

The discharge series produced from the couplechastic rainfall and rainfall-runoff
models were used to produce cumulative distribstimindischarge, plotted in Figure 1A,
and shown in detail in Figure 1B for comparisonhwiite 2001 flood.

Figure 1: Modelled Discharge: Return Period Relation. A. Full Range. B. Detail. Dashed Lines
show (a) Discharge associated with 2001 flood, with return period estimated from
median and quartiles and (b) Discharge associated with 100-year flood.

The results demonstrate the high level of uncestassociated with predictions made
using the simulated rainfall series and rainfattefi model. For example, the 90%
confidence interval for the 100-year flood disctearg 14.8 - 48.0 fis* (Figure 1B), a
large uncertainty in terms of flood hazard or ire tbost-benefit ratio of any flood
protection works. Similarly, estimates the retusripd of the October 2001 flood (20.5
m3s?) range from 7 to 146 years between the 5% and dBattiles (the return period
estimated from the upper 90% bound was not captured

Hydrograph Formation

The hydrograph for each return period (10, 50, 500, and 1000 years) at the 5%, 50%
(median) and 95% percentiles was formed accordmmghe empirical flow-volume
relationship found (Equation 11).
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Volume = 36720 * Flow*®
Equation 11: Regression Relationship between Peak Flow (m’s™) and Volume (m®)

The strong correlation found between flow and vauoorrelation coefficient 0.90)
justifies the use of a standardised hydrographdasepeak value. As an example, the
hydrographs for the 1000-year flood are shown gufe 2.

Figure 2: Design Hydrographs for the 1000-year return period, at the 5%, 50% and 95% points
of the cumulative distribution

Inundation Extent

The design hydrographs give discharge series iog#uging station at Linton, upstream
of the town centre, forming the upstream boundamyddion for the hydraulic model.
Following model evaluation, the floodplain code waglemented at 10 m resolution
using the sub-grid porosity treatment for maximuwmputational efficiency. The
channel friction coefficient (Manning’s n) was s&t0.05 m'®s, which gave optimal
performance judged using a multi-criteria validatitor the 2001 flood event. This
validation was based on a weighted combinationeofopmance measures in hydrograph
simulation and inundation behaviour. Downstreanmrbgchphs were judged according to
accuracy of peak discharge magnitude and timingydation simulations were validated
using a fuzzy performance measure which testeddfldepth prediction for each
inundation property, while allowing a margin of arrfor perceived reporting
inaccuracies. For each return period, the hydramimdel was used to produce an
inundation simulation relating to the design hydegmips for the 5%, 50% and 95% points
of the distribution of peak discharge magnituddse flesults are shown in Figure 3.

Figure 3: Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative
distribution of peak discharge magnitudes

Communication of Results

The spatial pattern of inundation extent evidenFigure 3 is ultimately constrained by
the valley morphology, so that despite large déifmres in the peak discharges of the
extreme return periods, the maximal inundation Epe remains comparatively
consistent. This is due to relatively steep topplyyaat the natural boundaries of the
floodplain which serves to constrain flood watddewever, it is also at this boundary
that accuracy in prediction becomes more critiaalpeyond the edge of the floodplain,
density of housing increases dramatically. On tleodplain itself, there are few
buildings, as waterlogged land and frequent flogdiave constrained construction.
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This illustrates the importance of presenting rssul a method sensitive to the intended
use. Mapped inundation extents (Figure 3) wouldudeful for strategic and emergency
planning at the local scale, e.g. preparation oérgency evacuation and traffic routing

plans. However, for applications such as a beweft- analysis for a structural flood

defence scheme, derived statistics such as nunfbeouses flooded may present the
trends more clearly (Figure 4). Further analysisl¢a@ount only houses flooded beyond
the protection limits of sandbags or removabledigates.

Figure 4: Number of houses flooded (to any depth) as a function of return period and percentage
point of peak discharge distribution

Figure 4 demonstrates a sharp rise in the numbgragerties flooded between the 10-
100 year events; then a smaller increase up t4@B6-year event. This might suggest a
threshold return period beyond which the expenditavolved in containing the Granta

would not be realised in terms of damage savinguofthwhile extension of the current

work would be to link the properties in the areatealuation, perhaps through zoning by
postcode, in order to estimate the financial cdseach flood event. This could be

achieved using depth-damage curves tailored talingiltype. Depth mapping would also

be useful to aid identification of areas of higbkrio life and greater damage to property.
Calculated variables such as area and number afesdnundated could be used directly
within the UK government system for assessmentubiré flood defence engineering

works (DEFRA, 2002).

Constraining Uncertainty in End-to-End Modelling

Constraining Uncertainty in Discharge

Quantifying the uncertainty in discharge predicteomd analysing its provenance offers
the scope to determine the main sources of unogytand identify means of uncertainty
reduction through refinement of model structureapseterisation or boundary condition
specification. Two example uncertainty sourcescaresidered here.

Effects of Uncertainty in Rainfall Series

Part of the uncertainty in discharge is due tostieehasticity of precipitation patterns that
force the model chain, simulated here via the ebs=mf 1000 climate scenarios. To
consider the reduction in uncertainty if improvetbWwledge of future rainfall behaviour
was available, we simulate the extreme case wherdull 1000-year rainfall series is
known exactly. The Monte Carlo simulations areue-using a single random ‘correct’
series, with each rainfall-runoff model parametdras before (Figure 5).
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Figure 5: Modelled Discharge: Return Period Relation, using single rainfall series. (a) Full
Range. (b) Detail. Dashed Line shows discharge associated with 2001 flood, with
return period estimated from median and quartiles.

The return period-flow curves are less smooth thesvious results, representing the
increased dependence on model response to particaiafall events. The 90%
confidence bounds for the 100-year discharge ayestightly reduced, from [14.8, 48.0]
to [14.8, 42.4] " (Figure 5B), indicating that rainfall uncertainityas only a small
impact on long term discharge prediction. Howeteg, estimate of a particular quantity
may be altered by a significant margin, e.g. th@12flood is estimated as having a return
period of 47.4 years instead of 33.7. The limitég@at of uncertainty in precipitation
patterns however ultimately reflects the derivatdithe rainfall model from a single 15-
year gauged record. A longer rainfall series migdrtain implicit non-stationarity that
exerts a significant control on discharge response.

Effects of Uncertainty in Rainfall-Runoff Model

To test the effect of uncertainty in rainfall-ruhehodel parameterisation, the suite of
model simulations were rerun, using the origindl cferainfall series, but the single
rainfall-runoff parameter set with the optimal valaf the performance measure (Figure
6). This mimics the situation where there is noantanty in the rainfall-runoff model
parameterisation.

Figure 6: Modelled Discharge: Return Period Relation, using optimised rainfall-runoff model
parameters. (a) Full Range. (b) Detail. Dashed Line shows discharge associated with
2001 flood, with return period estimated from median and quartiles.

In this situation, discharge estimate uncertairgy greatly reduced, e.g. the 90%
confidence interval for the 100-year flood disclearg constrained from [14.8, 48.0] to
[17.5, 20.8] mis?, a significant advantage for any planning of flodefence works.
However, this analysis must not be confused with risults of using a single set of
parameters without justification. Many of the ait&ive parameter sets had a
performance value very close to the optimum, giitite reason to suppose that one set
should be accepted against the rejection of akrsthDiscounting these other possible
flow values may have particularly damaging consaqas as the confidence limits fall at
the lower end of the range of the wider boundspiitemum set does not necessarily give
values bracketing the median of the complete uargytanalysis.

Propagating Uncertainty through Inundation Simulations

The preceding section analysed the relative effeictscertainty in the rainfall input and
rainfall-runoff model parameters. To understand heuch changes in discharge
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prediction distributions would affect inundationedictions in the coupled model
structure, the uncertainty was propagated throbghhydraulic model, as before (Figure
7). The 100-year event only was considered, agralatd for comparison.

» Plot (a) shows the original analysis of the 100rykrd, repeated for comparison.

* Plot (b) shows the significant reduction in uncertia of flood boundary position
possible if the rainfall-runoff model parametersiicobe defined exactly. Although this is
unlikely due to equifinality in parameter sets, $@a by model structural deficiencies and
limited calibration data, it demonstrates that Bigant benefits could be achieved by
further work to reduce the number of models coneidi®ehavioural.

* Plot (c) shows the small reduction in uncertainthiavable if the future rainfall
patterns were known exactly, however the relativelgor impact compared with that of
Plot (b) suggests that improvements in rainfalleffirmodelling should take precedence
over improvements in rainfall characterisation.

Figure 7: Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative
distribution of peak discharge magnitudes for the 100-year flood, using three
alternative methods to calculate uncertainty bounds.

Sensitivity to Inundation Model Parameterisation

As discussed, uncertainty in the channel frictioarameter used to calibrate the
floodplain inundation model was not considered daecomputational constraints.
However, a decoupled ‘sensitivity analysis’ was emaken to assess the relative scale of
this uncertainty.

For each return period, the 50% (median) hydrograpé routed through the floodplain
using channel friction coefficients of 0.04 and &.6i*"s, chosen to surround the
previously selected optimum of 0.05% which represented a single, global maximum
in the validation statistic response space. Moreeexe values were found to depress
validation scores. Inundation envelopes from thé-y€ar flood (Figure 8) show that
varying the friction parameter value within the dfied range has a relatively small
effect relative to the uncertainty sources prevpwsnsidered. It should however be
understood that a simplistic analysis of this kuathnot represent the nonlinear effects of
uncertainty propagation through the model chaiml, la@nce provides only a guide as to
the likely effect of uncertainty on model results a full application of the GLUE
procedure to the coupled model system.
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Figure 8: Variation in inundation envelope: Comparison of (a) Uncertainty in rainfall and rainfall-
runoff model parameters and (b) Uncertainty associated with floodplain model channel
friction parameter

Comparison with Standard Analysis

To illustrate the characteristic differences of tBad-to-End FRA framework from
conventional methodologies, the inundation predidimade using the new method are
compared with those of a standard FRA, carriedbyuthe UK Environment Agency
which is responsible for flood management at tied #site (Bullen Consultants, 2002;
Halcrow 2003; 2004). The methods used are thosermly recommended in the Flood
Estimation Handbook (Robson and Reed, 1999): alatdrtext which provides guidance
widely used in planning scenarios and engineerpgieations. In brief, hydrographs are
produced using a dual method. Firstly, hydrogramps is produced by routing a design
rainfall event through a rainfall-runoff model. Eiflood events during the period 2000-
2001 are used to estimate the parameters of thieim8econdly, discharge magnitude is
calculated using statistical methods. The dischaegerd is augmented using a ‘pooling
group analysis’ which identifies hydrologically slar catchments based on catchment
area, average annual rainfall and baseflow regmmerity is given to catchments close to
the study site. In the case of Linton, 17 othegssdre used, giving a combined total of
486 years of record. Using this extended data e, flood frequency curve is
constructed by fitting a 3-parameter Generalisedidte Distribution to the data, with
cumulative distribution function as follows:

-1
F(Qka.¢)= [1+(1—§(Q - &)k ﬂ (k#0)  (Equation 12)

The resulting discharge estimate is used to sbaléydrograph from the rainfall-runoff

model. This provides an upstream boundary conditana 1D hydraulic inundation

model, based on cross-sectional data and createdy USIS modelling software

(Wallingford Software Ltd, 2006), to route flow algp the channel and overbank.

The contrasting nature of the techniques is redtkdéh the predictions of the 100-year
discharge: 10.2 fs* in the standard model versus 25.3smmedian prediction in the
end-to-end model, which manifest themselves in ithendation envelope forecasts
(Figure 9). The difference stems from the consed@idesign event methodology of the
standard analysis, such as an inability to includermation on antecedent wetness
conditions. However most notable is an over-rekaan the gauged floodplain record in
the statistical flood frequency analysis, whichsloet allow for measurement errors such
as drowning of flow gauges during flood, as is knot® happen at the trial site. In
contrast, the end-to-end technique is able to cosgte for such malfunctions using the
correctly recorded rainfall data together with tradibrated rainfall-runoff model. This
situation demonstrates the valuable way in whiclingggrated, end-to-end methodology
can add value to short or censored methods by usodgels to capture information on
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physical catchment processes. In addition, a momptex pattern of inundation is
predicted when using the new method with a 2D moslewing flow paths within the
floodplain and high resolution definition of thedd boundary.

The large difference in predictions of flood enyeohas the potential to lead to very
different approaches to flood risk mitigation. Tie@resentation of uncertainty within the
end-to-end forecast also enables a more comprefeensnsideration of possible flood
scenarios which is not possible using the restiteestandard analysis technique.

Figure 9: Comparison in 100-year flood envelopes predicted using the proposed End-to-End
method versus a standard statistical method using the 1D ISIS flood model
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Discussion

This paper set out to design a novel, flexiblecpss-based FRA methodology, relying
on a chain of coupled models running within a prouvacertainty-estimation structure. A

number of key findings are made. First, the begadit extending the flood frequency

analysis beyond discharge magnitude estimatesctade inundation simulations were

demonstrated. By integrating a hydraulic model ithe® coupled model cascade,

hydrologists gain the opportunity to explore thdatienships between discharge,

inundation extent, flow paths, and likely damagentoastructure and buildings. This is

especially relevant in the light of recent trenesag from structural flood defences and
towards a greater reliance on integrated catchmeanitgement approaches which aim to
manage a ‘functional floodplain’.

An important aspect of the modelling procedurehss itejection of the principle of using
deterministic forecasts. These are replaced bytseisuthe form of distribution quantiles,
which are presented as hazard maps to allow artivetunterpretation of the effects of
uncertainty on flood forecasts. Maps showing thenfidence intervals allow an
assessment of which areas of the floodplain are sersitive to uncertainty in discharge
predictions due to channel shape and local topbgra@lthough the inclusion of
uncertainty estimates in a flood frequency analysistill a relatively rare occurrence
outside academic research, its importance was demaded here: a deterministic model
using a single set of rainfall-runoff model paraemstwas shown to give biased and
under-predicted estimates of flood hazard. In shisly, computational restraints forced a
reduced set of hydraulic model simulations, howatves hoped that in the future the
methodology could be extended to include uncegaimh hydraulic model
parameterisation as part of the full GLUE applieatiWhile it would not be practical to
propagate predictions from each discharge serresigh the hydraulic model, a concept
such as that of functional similarity (Pappenbergteal., 2005) might be used to reduce
computational effort. This complementary approacakes alternative choices to the
method outlined here: rather than simplifying theuming procedure between
consecutive models, instead the number of rainfebff model parameter sets is
severely restricted, by classification accordinghi type of hydrograph forms produced.

A wider reporting of the effects of uncertainty model predictions may also provide an
impetus for further data collection in order to stvain uncertainty. By emphasising that
observed floods may fall within wide prediction Imoig rather than the more simplistic
interpretation that the deterministic model is ‘wgg it becomes more obvious how
additional data could aid future predictions. Irstktudy, results showed that the major
cause of uncertainty was equifinality in rainfalhoff model parameterisation, and
therefore suggests that future effort might bestdbected at reducing the range of
behaviour associated with the set of behaviouradfal:runoff models. These more
detailed conclusions are, however, dependant onntbdels and coupling methods
chosen for the trial study, also the range of patams and uncertainty sources that were
analysed.
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Conclusion

This paper presents the argument for process-b&$®8 methodology based on

continuous simulation within the context of a chafrcoupled models. Taking advantage
of advances in data provision, and reduced complexiodelling techniques, high-

resolution flood inundation simulation is included part of the model chain. Such a
strategy is highly desirable in an age where natiestarity of the flood generation

process, together with changing approaches to fioibigation, have rendered traditional
statistical FRA techniques increasingly obsolete.

Uncertainty estimation was included as an integmait of the procedure, to assess
stochasticity and parameter uncertainty withinrtiedel chain. Results from a trial flood
frequency analysis showed that significant uncetyaivas present in estimates of flood
extent, and indicated where future work might redtids most effectively. The current
use of deterministic flood risk analyses was fotmdbe unduly restrictive and likely to
give biased estimates of flood risk.
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Figures

Modelled Discharge: Return Period Relation. (a) Full Range. (b) Detail. Dashed Lines
show A. Discharge associated with 2001 flood, with return period estimated from
median and quartiles and B. Discharge associated with 100-year flood.

Design Hydrographs for the 1000-year return period, at the 5%, 50% and 95% points
of the cumulative distribution

Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative
distribution of peak discharge magnitudes

Number of houses flooded (to any depth) as a function of return period and point of
peak discharge distribution

Modelled Discharge: Return Period Relation, using single rainfall series. (a) Full
Range. (b) Detail. Dashed Line shows discharge associated with 2001 flood, with
return period estimated from median and quartiles.

Modelled Discharge: Return Period Relation, using optimised rainfall-runoff model
parameters. (a) Full Range. (b) Detail. Dashed Line shows discharge associated with
2001 flood, with return period estimated from median and quartiles.

Areas of Predicted Inundation at the 5%, 50% and 95% points of the cumulative
distribution of peak discharge magnitudes for the 100-year flood, using three
alternative methods to calculate uncertainty bounds.

Variation in inundation envelope: Comparison of (a) Uncertainty in rainfall and rainfall-
runoff model parameters and (b) Uncertainty associated with floodplain model channel
friction parameter

Comparison in 100-year flood envelopes predicted using the proposed End-to-End
method versus a standard statistical method using the 1D ISIS flood model
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949 distribution of peak discharge magnitudes for the 100-year flood, using three alternative
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Figure 9: Comparison in 100-year flood envelopes predicted using the proposed End-to-End
method versus a standard statistical method using the 1D ISIS flood model



